

Checking Datasets before Submitting Code
Mark Tabladillo, Ph.D., Atlanta, GA

ABSTRACT
This presentation will focus on the specific two-level dataset
validation used throughout the application before any code is
submitted. The first level checks for dataset availability, and the
second level checks for integrity within and among datasets and
attributes (variables). Eight classes (based on the Strategy
design pattern) use this two-level methodology. Specific
examples from the SAS/AF® application will be presented, but the
checking methodology is of generic value to any application with
submit blocks, and could be implemented using SAS® Macro
Language and %SYSFUNC.

Extensive experience with classes or objects or design patterns is
not necessary for this talk, but the presentation assumes basic
knowledge of the SCL language.

INTRODUCTION
To assist states and countries in developing and maintaining their
comprehensive tobacco prevention and control programs, the
Centers for Disease Control (CDC) developed the Youth Tobacco
Surveillance System (YTSS). The YTSS includes two
independent surveys, one for countries and one for American
states. A SAS/AF® application was developed to manage and
process these surveys. During a four year period, over 1,000,000
surveys have been processed for 35 states and 100 international
sites (from 60 countries).

This presentation will focus on checking datasets before
submitting code within a SAS/AF application. The SAS/AF
application supports information integrity and manages data flow
by using SAS/AF procedures (presented in a frame), Windows
native procedures, and one graphical control. Whether applied in
classes or in Frame-related code, the SCL language provides the
power to access and manipulate data.

The next two introductory sections will introduce how to move
data from datasets to the SCL environment, and outline: 1) how to
access datasets, 2) how to check dataset integrity. After these
two introductory sections, the presentation focuses on checking
datasets before submission. The checking methodology
presented is of general utility for any application used to validate
SAS datasets.

ACCESSING SINGLE DATASETS
The application uses the control datasets (either non-modifiable
or modifiable) to generate both SCL and submitted SAS code.
The term “control” refers to the ability to affect or create either
SCL or SAS code. A “control dataset” therefore will affect or
create SCL or SAS code from a SAS dataset.

The application uses SCL to read information from the dataset
into memory. From that point, the data can be directly used in
SCL, or optionally, submitted with base SAS code. Code
submission is required for many types of commands, like the data
step or most procedures, both of which unfortunately have no
direct SCL equivalent. Life would be different if the SAS
procedures were made available as inheritable classes.

Creating customized base SAS code from SCL involves sending
portions of the programming code to the preview buffer, and then
releasing the preview buffer using the SUBMIT CONTINUE and
ENDSUBMIT commands. The technique is similar to running a
SAS macro; however, there are some differences. First, SCL
distinguishes between numeric and character substitution, while

macro variables are all assumed to be a character type. Second,
the way SCL encapsulates variables, especially in classes, is
typically more complex that the two choices of global and local for
SAS Macro variables.

Instead of providing a specific example, the following table lists
key SCL commands repeatedly used to read SAS datasets and
submit customized blocks of code.

Command Use
SUBMIT Allows sending only part of a

command to the preview buffer, even
allowing you to send part of a line
(without the semicolon)

ENDSUBMIT Marks the end of a block of text sent to
the preview buffer

OPEN Opens the dataset
ATTRN, ATTRC Obtains information about the dataset,

specifically NLOBS, the number of
non-deleted observations

VARNUM Determines the variable number
(order) given the variable name

FETCHOBS Obtains one observation from the
dataset

GETVARN Obtains the numeric value
GETVARC Obtains the character value
CLOSE Closes the dataset (allow the dataset

lock to be released and allowing the
LIBNAME to be cleanly reset)

SUBMIT CONTINUE Releases all the code in the preview
buffer for execution

Typically, the information was read (by a non-visual object)
directly from the dataset and sent straight to the preview buffer.
However, sometimes it was efficient to save dataset information
or values in one or more SCL lists for repeated use throughout
the SCL code. Within a class, the preferred saving method was
multiple SCL lists, rather than attempting to create an XML-type
nested SCL list (which is more prone to coding errors and
maintenance headaches); rather, SAS already provides a way to
easily access and reference a nested SCL list, and that way is
called a class, and sometimes classes save dataset information in
other classes.

SINGLE DATASET INTEGRITY OVERVIEW
The last section outlines how to access a single dataset. Another
aspect of control is control dataset integrity, referring to having
valid values inside the fields of a single dataset. Validity checks
were all performed in SCL, as prerequisites to running processes,
or in the Frame-related code.

In some cases the application applies checks when the data is
input into SAS format from (for example) ASCII or Excel. A
datasets tab (on the Frame) was created for importing and
exporting control datasets to and from various formats. That tab
also has a visual SAS data grid component, which can be used to
modify the dataset. However, our experience has been that
Microsoft Excel is generally less prone to crash (since touching
some spots around the legacy data table component may crash
SAS version 8 for Windows). Excel is also more useful because it
is not an inherent database software, and therefore does not have
the size and type (character or numeric) specifications (which
become restrictions) that Microsoft Access or SAS would have.
The Excel interface allows for easily reordering variables,
renaming columns, or easily resizing character fields.

At several points, individual datasets are checked for integrity,
and specifically that certain values and dataset characteristics are
valid. For example, a field may be checked for valid codes.
Another example is that a code fragment variable is checked to
see that the parentheses are balanced (named “code fragment”
because the information is submitted behind an IF statement in
base SAS). During the initial design phase it's possible and
prudent to build in many checks. However, exceptions and
anomalies continue to arise, specifically because each survey
questionnaire and analysis could potentially be different.

These above checks help insure, when the data are brought into
a SAS dataset, that the information is valid. However, this design
has an inherent flaw since it only is checking one specific dataset,
rather than checking datasets together. Also, it only runs when
someone has gone through the process of putting something into
SAS format, and it is possible that something should have been
brought into a SAS dataset which was not. Therefore, while it is
important and essential to have these single dataset integrity
checks, there is no way under this design (alone) to catch all
possible run-time errors, and the point of this presentation is to
present how to check datasets (plural) together.

MULTIPLE DATASET INTEGRITY OVERVIEW
Since the control datasets were used to send information straight
to SAS execution, there are many opportunities for the application
to crash. Given that the dataset integrity has already been
addressed, there are some important checks to make before
sending anything to a preview buffer, and these checks focus on
what needs to be available for specific processes to run.

The original six base SAS programs were consolidated into five
processes (a “process” is defined here as SCL code combined
with run-time submitted SAS code). There are five processes
because each step represents a stopping point where some
amount of analyst checking needs to be done to insure that the
final output is as expected. Those analyst checks include reports
intentionally created to look for potential anomalies in the survey
data, and for conditions under which the original sample design
might be violated. For example, the users check that the
expected number of surveys had indeed been scanned in
(typically the survey is administered on bubble scantron-type
forms) and match to the original school roster; this type of check
needs to be done manually and not automated because there are
numerous ways to verify whether the expected or scanned data
numbers are wrong, including possibly recounting original
scantron sheets.

Internally, each of the five core processes has a similar SCL
checking structure for possible early termination, and this paper
focuses on that preprocess checking structure.

First, the process checks that all accessed datasets exist and can
be exclusively opened, as tested by the SCL OPEN function. If
the dataset does not exist, sometimes the program will copy the
standardized master copy; in other cases, there is no
standardized dataset, and the program will terminate early with an
error which indicates what datasets are either missing or
unavailable. However, the expected situation will be that the
dataset does exist and is available for exclusive use, and
therefore can be locked. This locking only affects the regional
level datasets, and therefore two separate analysts could be
working on different regions of the same survey without
encountering a locking error.

Second, the program checks for the existence of certain variables
within each dataset, as tested by a nonzero return code from the
VARNUM command. Each type of dataset has to have
standardized names for this type of check to work. For example,
the questionnaire layout file needs to have the variable
"QUESTION" as a character type. The program looks for
assigned standardized variable names and expected variable

types (numeric or character). If any expected variable is not
present or is of the wrong type, the program terminates early with
an error.

Over time, variables were sometimes added to the control
datasets in two categories, either required or optional. New
required variables cause early termination if not present (just as
any required variable would).

A new optional variable, if present, will trigger perhaps a block of
SCL or base SAS code. For example, the survey questionnaire
layout file includes an optional table numbers field (or variable).
The original code automatically creates table numbers (for the
TITLE statement) starting at one and increasing by one.
However, sometimes cross-regional comparisons are more easily
done when standardized table numbers represent specific
variables, and those numbers may not reflect the file's (or sorted
file's) variable order. Thus, the code now looks for a optional
"TABLENUM" variable, which is not required to execute the code,
but when present will be used instead of the standardized
counter.

Beyond the first five processes, other processes have been
added, and there are now a total of eight distinct processes. Also,
the application has been refactored to make these processes
follow the Strategy design pattern, and they are therefore now
eight distinct classes which are subclasses of the
surveyYearAnalyzer class. Previously, each process was an SCL
method. The specific class structure is incidental to this
presentation, but is available for reference (Tabladillo, 2003a).

In summary, before any code is sent to the preview buffer, SCL
checks the existence and availability of datasets, and the
existence and correct variable types of variables. This section
outlines how to check datasets before submitting code, but the
next sections present a specific example.

AN EXAMPLE: PREFERRED TABLES
One of the key processes produces what are called “preferred
tables”. The term “preferred” refers to the binary variables which
collapse survey results, often in multiple categories, to two
specific categories (a “yes”/”no” response). This process
produces a set of tables (using proc tabulate) for each region-
specific preferred variable. What this process does is less
important than the fact that four specific datasets are required to
make this preferred table process run. If any of these four
datasets is missing or has bad values, then bad results will be
produced. This example is presented in three sections: 1) Setup,
2) First Round: Dataset Availability, and 3) Second Round:
Variable Availability.

SETUP
First, the datasets are accessed through the dataset attribute
classes, so these four classes are linked to four (highlighted)
specific objects. The definition code here does not use the DCL
statement because they are in classes.

* Working Classes;
protected dataset_attr_prefSummary.class
 prefSummaryObj/(
 Category='Preferred Working Class',
 Description='Dataset Attributes for
Preferred Summary',
 AutoCreate='Yes',
 Editable='NO',
 ValidValues=''
);

protected dataset_attr_preferredvars.class

 preferredvarsObj/(
 Category='Preferred Working Class',
 Description='Dataset Attributes for
Preferred Variables',
 AutoCreate='Yes',
 Editable='NO',
 ValidValues=''
);

protected dataset_attr_layout.class
 layoutObj/(
 Category='Preferred Working Class',
 Description='Dataset Attributes for
Layout',
 AutoCreate='Yes',
 Editable='NO',
 ValidValues=''
);

protected dataset_attr_data.class
 dataObj/(
 Category='Preferred Working Class',
 Description='Dataset Attributes for
Dataset',
 AutoCreate='Yes',
 Editable='NO',
 ValidValues=''

Note that the objects are all declared as “protected” which helps
prevent the objects from being accessed from other parts of the
application without going through this checking procedure.
Accessing the datasets is completely encapsulated within the
object, and other objects can only request information from this
class (as opposed to directly accessing the process’ control
datasets). The “protected” status was chosen so that subclasses
could also access datasets, and the term “private” would have
prevented subclasses from accessing these objects.

Next, the objects are instantiated.

 * Initialize Objects;
 preferredvarsObj = _new_
dataset_attr_preferredvars.class();
 prefsummaryObj = _new_
dataset_attr_prefsummary.class();
 layoutObj = _new_
dataset_attr_layout.class();
 dataObj = _new_
dataset_attr_data.class(sex,level,age,special);

Three of the classes do not require any information to be
instantiated. The dataObj requires the SCL variables sex, level,
age and special. Instantiation means the object now exists and is
ready for method calls. The number passed back to the object is
the unique identifier of the SCL list containing the instantiated
class information.

FIRST ROUND: DATASET AVAILABILITY
In the first round, the software will check whether or not process
can open the datasets. It is possible that these checks will fail,
and the two most common reasons are that the dataset does not
exist at all, or that the dataset is locked (marked for exclusive use)
by another process. The code does not attempt to determine the

reason for failure, but simply will pass on an error message
through setting the variable called “systemMessage”. The error
messages will result in a normal program termination without
completing the process.

The “openDataset” method was created to capture the following
steps each time the application attempts to open a dataset in the
“input” mode (meaning read-only access), which is the most
common open mode for this application:

OPENDATASET:public method
 inputDataset:INPUT:CHAR
 return=num
 /(
 Description='Opens dataset for input'
);
 DCL
 num
 returnCode
 ;
 returnCode = 0;
 returnCode = exist(inputDataset,'DATA');
 if returnCode = 1 then do;
 datasetID = open(inputDataset,'i');
 if datasetID le 0 then
 systemMessage = '*** NETWORK ERROR:
DATASET CANNOT BE OPENED IN INPUT MODE -- ' ||
inputDataset;
 end;
 else do;
 systemMessage = '*** NETWORK ERROR:
SAS DATASET DOES NOT EXIST -- ' || inputDataset;
 end;
 return(systemError);
ENDMETHOD;

Instead of doing an outright OPEN, first the method checks for
dataset existence, and then the dataset is attempted to be
opened in “input” mode. If these conditions are not true, then an
error is returned.

The code below shows how the process object calls the
openDataset method. The openDataset method is coded in an
abstract parent class, and therefore is inherited by all the different
dataset attribute children (named DATASET_ATTR_child.class).

* SETUP THE CONTROL DATASETS;
returnCode =
preferredvarsObj.openDataset('SASDATA.'||_self_.
selectedRegionObj.PREF);
if returnCode then systemMessage = 'ERROR:
CANNOT ACCESS REGIONAL PREFERRED DATASET';
returnCode =
prefsummaryObj.openDataset('SASDATA.'||_self_.se
lectedRegionObj.PSMDATA);
if returnCode then systemMessage = 'ERROR:
CANNOT ACCESS REGIONAL PREFERRED SUMMARY
DATASET';
returnCode =
layoutObj.openDataset('SASDATA.'||_self_.selecte
dRegionObj.LAYOUT);
if returnCode then systemMessage = 'ERROR:
CANNOT ACCESS REGIONAL LAYOUT DATASET';

returnCode = dataObj.openDataset(sourceData);
if returnCode then systemMessage = 'ERROR:
CANNOT ACCESS REGIONAL DATASET WITH WEIGHTS';

* Determine Fact Sheet Production;
returnCode =
factSheetObj.openDataset('SASDATA.'||_self_.sele
ctedRegionObj.FACTSHEET);
if returnCode then do;
 returnCode =
factSheetObj.clearErrorList();
 produceFactSheet = 0;
 logMessage = 'REGIONAL FACT SHEET DATASET
NOT FOUND -- NO FACT SHEET WILL BE PRODUCED';
end;
else do;
 produceFactSheet = 1;
 logMessage = 'REGIONAL FACT SHEET DATASET
FOUND -- FACT SHEET WILL BE PRODUCED';

 * Response rates dataset;
 returnCode =
responseObj.openDataset(sourceRates);
 if returnCode then do;
 systemMessage = 'ERROR: CANNOT ACCESS
REGIONAL RESPONSE RATES';
 produceFactSheet = 0;
 end;
 else do;
 returnCode =
responseObj.closeDataset();
 if returnCode then systemMessage =
'ERROR: CANNOT CLOSE REGIONAL RESPONSE RATE
 end;
end;

Also included in the above code is a check for a regional
factsheet. This factsheet dataset is a fifth dataset possibly
available but not required to run the process. If present, the
software will produce a “factsheet” which is a one-page summary
of certain preferred table results. Note also that the response rate
dataset is required if the factsheet is present. This code is
included to illustrate that conditionally available datasets can be
determined during this first round.

If there are any errors, then the variable “systemMessage” is set
to a value, and those values are automatically stored in an SCL
list. There is another variable called “systemError” which is simply
the length of the SCL list holding the system messages. So, if
there are no errors, then “systemError” will have a value of zero.
Otherwise, this numeric variable will have the value of the number
of errors. The “systemError” variable can then be used as a
qualification to continue, as in “if not(systemError) then do…”. If
any errors appear at this stage, the program terminates, and the
SCL list holding the errors prints to the log, allowing the analyst to
fix whatever problems were flagged. Over time, the specific
wording of errors has been improved based on empirical use, and
in some cases, code added to help the analyst take action. As
with any application, this SAS/AF application uses many terms
which have specific and consistent meanings, and learning those
terms are a part of the initial analyst training.

SECOND ROUND: VARIABLE AVAILABILITY
Given that there are no errors, the program then proceeds to
check the integrity of the four required datasets (code will not be

included here for the optional datasets). The following code is in
four sections, each of which checks that the number of
nondeleted observations (NLOBS) is greater than zero, and that
certain named variables are present (they are present if their
VARNUM is greater than zero) and of the correct type (either
character or numeric – at present, there are no list types in SAS
datasets, but if there were it would be like XML).

* Determine Possible Runtime Errors;
if preferredvarsObj.nlobs le 0 then
 systemMessage = 'ERROR: REGIONAL
PREFERRED DATASET HAS INSUFFICIENT
OBSERVATIONS';
if preferredvarsObj.varnum_name le 0 then
 systemMessage = 'ERROR: REGIONAL
PREFERRED DATASET HAS NO <NAME> VARIABLE';
if preferredvarsObj.varnum_yea1 le 0 then
 systemMessage = 'ERROR: REGIONAL
PREFERRED DATASET HAS NO <YEA1> VARIABLE';
if preferredvarsObj.varnum_nay2 le 0 then
 systemMessage = 'ERROR: REGIONAL
PREFERRED DATASET HAS NO <NAY2> VARIABLE';
if preferredvarsObj.varnum_question le 0 then
 systemMessage = 'ERROR: REGIONAL
PREFERRED DATASET HAS NO <QUESTION> VARIABLE';
if preferredvarsObj.vartype_name ne 'C' then
 systemMessage = 'ERROR: REGIONAL
PREFERRED DATASET <NAME> VARIABLE SHOULD BE
CHARACTER';
if preferredvarsObj.vartype_yea1 ne 'C' then
 systemMessage = 'ERROR: REGIONAL
PREFERRED DATASET <YEA1> VARIABLE SHOULD BE
CHARACTER';
if preferredvarsObj.vartype_nay2 ne 'C' then
 systemMessage = 'ERROR: REGIONAL
PREFERRED DATASET <NAY2> VARIABLE SHOULD BE
CHARACTER';
if preferredvarsObj.vartype_question ne 'C' then
 systemMessage = 'ERROR: REGIONAL
PREFERRED DATASET <QUESTION> VARIABLE SHOULD BE
CHARACTER';

if prefSummaryObj.nlobs le 0 then
 systemMessage = 'ERROR: REGIONAL
PREFERRED SUMMARY DATASET HAS INSUFFICIENT
OBERVATIONS';
if prefSummaryObj.varnum_name le 0 then
 systemMessage = 'ERROR: REGIONAL
PREFERRED SUMMARY DATASET HAS NO <NAME>
VARIABLE';
if prefSummaryObj.varnum_question le 0 then
 systemMessage = 'ERROR: REGIONAL
PREFERRED SUMMARY DATASET HAS NO <QUESTION>
VARIABLE';
if prefSummaryObj.varnum_yeacrit le 0 then
 systemMessage = 'ERROR: REGIONAL
PREFERRED SUMMARY DATASET HAS NO <YEACRIT>
VARIABLE';
if prefSummaryObj.varnum_naycrit le 0 then
 systemMessage = 'ERROR: REGIONAL
PREFERRED SUMMARY DATASET HAS NO <NAYCRIT>
VARIABLE';

if prefSummaryObj.varnum_freqstr le 0 then
 systemMessage = 'ERROR: REGIONAL
PREFERRED SUMMARY DATASET HAS NO <FREQSTR>
VARIABLE';

if layoutObj.nlobs le 0 then
 systemMessage = 'ERROR: REGIONAL LAYOUT
DATASET HAS INSUFFICIENT OBSERVATIONS';
if layoutObj.varnum_newname le 0 then
 systemMessage = 'ERROR: REGIONAL LAYOUT
DATASET HAS NO <NEWNAME> VARIABLE';
if layoutObj.varnum_question le 0 then
 systemMessage = 'ERROR: REGIONAL LAYOUT
DATASET HAS NO <QUESTION> VARIABLE';
if layoutObj.vartype_newname ne 'C' then
 systemMessage = 'ERROR: REGIONAL LAYOUT
DATASET <NEWNAME> VARIABLE SHOULD BE CHARACTER';
if layoutObj.vartype_question ne 'C' then
 systemMessage = 'ERROR: REGIONAL LAYOUT
DATASET <QUESTION> VARIABLE SHOULD BE
CHARACTER';

if dataObj.nlobs le 0 then
 systemMessage = 'ERROR: REGIONAL CLEANED
DATASET HAS INSUFFICIENT OBSERVATIONS';
if dataObj.varnum_sex le 0 then
 systemMessage = "ERROR: REGIONAL CLEANED
DATASET HAS NO <"||SEX||"> SEX VARIABLE";
if dataObj.varnum_level le 0 then
 systemMessage = "ERROR: REGIONAL CLEANED
DATASET HAS NO <"||LEVEL||"> LEVEL VARIABLE";
if dataObj.varnum_age le 0 then
 systemMessage = "ERROR: REGIONAL CLEANED
DATASET HAS NO <"||AGE||"> AGE VARIABLE";
if dataObj.vartype_sex ne 'N' then
 systemMessage = "ERROR: REGIONAL CLEANED
DATASET <"||SEX||"> SEX VARIABLE SHOULD BE
NUMERIC";
if dataObj.vartype_level ne 'N' then
 systemMessage = "ERROR: REGIONAL CLEANED
DATASET <"||LEVEL||"> LEVEL VARIABLE SHOULD BE
NUMERIC";
if dataObj.vartype_age ne 'N' then
 systemMessage = "ERROR: REGIONAL CLEANED
DATASET <"||AGE||"> AGE VARIABLE SHOULD BE
NUMERIC";

* Obtain DataVarsList;
if not(systemError) then do;
if dataObj.datasetID then do;
 if dataObj.nvars > 0 then do;
 dataVarsList = makelist();
 do counter = 1 to dataObj.nvars;
 dataVarsList =
insertc(dataVarsList,varname(dataObj.datasetID,c
ounter),-1,putn(counter,'best3.'));
 end;
 dataVarsList = sortlist(dataVarsList);

 CALL PUTLIST(dataVarsList,'Data File
Variables',1);
 end;
 else systemMessage = 'ERROR: REGIONAL
DATASET WITH WEIGHTS HAS INSUFFICIENT
VARIABLES';

 returnCode = dataObj.closeDataset();
 if returnCode then systemMessage =
'ERROR:CANNOT CLOSE REGIONAL DATASET WITH
WEIGHTS';
end;
else do;
 systemMessage = 'ERROR: UNABLE TO ACCESS
OPEN DATAOBJECT';
end;
end;

Also included in the above code is a routine which accesses
dataObj, and attempts to make an SCL list with “Data File
Variables”. Populating this SCL list is considered a requirement
before running the program. In general, any of the accessed
datasets could have information pulled from them and stored in
SCL lists, or character or numeric variables, and then optionally
checked for internal integrity or against each other for referential
integrity. The information could also be checked with other
variables within the SCL environment (namely information entered
on the frame). The point is that reading and validating information
can and should be done before any SUBMIT calls are made.
Particularly in this second round, you can see that referential
dataset integrity checks are logically an immediate precursor to
submitting blocks of SAS code.

If any errors are present after the second round of checking, then
the system message SCL list will be populated, and the process
will terminate normally with error messages printed to the log.
The analyst can then fix whatever errors are present and run the
process again.

BEYOND ROUND TWO
Other types of validation can be done during the SUBMIT process
(by using the SUBMIT CONTINUE command, then proceeding
with SCL code), and this technique is done in certain places in the
application. However, those intermediate stopping points are for
choosing between run paths, and none of the possible choices
are expected to cause a run-time crash (that has been proven
true throughout the application’s life). Anything which could crash
the submitted program during run-time should be rolled into the
first or second round of checking, before anything is submitted.

The developer needs to know the submitted code well to
anticipate the types of things which will cause submitted code to
crash. In this example, the four datasets chosen were called
during the submitted code. The conservative approach, the one
applied here, is to check for all the datasets called and choose all
the variables accessed. There is, therefore, an intrinsic coupling
between these dataset checks and the submitted code, and in the
future, when the submitted code changes, then these dataset
checking rounds also need to be examined for potential changes
too.

CONCLUSION
Managing a large file structure is very doable with SAS/AF, but
requires forethought and planning. While a standard SAS/AF
project is complex enough, a highly customized application, such
as the one presented, presents unique challenges which can be
best handled with not only the standard SAS/AF interaction, but
also the intentional extension of the “Analysis Matrix” design

pattern (Shalloway and Trott, 2002). Though single datasets can
and should be checked for internal consistency upon bringing
them into the SAS application environment (whether in SAS
native format or another format), multiple dataset checks most
logically belong immediately preceding specific processes. These
multiple checks include required and optional datasets, required
and optional fields, and required and optional data.

Further information is available on this application’s class
structure (Tabladillo, 2003a) and development (Tabladillo, 2003b).

REFERENCES
SAS Institute Inc. (2002), SAS OnlineDoc 9, Cary, NC: SAS
Institute, Inc.
Shalloway, A., and Trott, J. (2002), Design Patterns Explained: a
New Perspective on Object-Oriented Design, Boston, MA:
Addison-Wesley, Inc.
Tabladillo, M. (2003a), "Application Refactoring with Design
Patterns", Proceedings of the Twenty-Eighth Annual SAS Users
Group International Conference, Cary, NC: SAS Institute, Inc.
Tabladillo, M. (2003b), "The One-Time Methodology:
Encapsulating Application Data", Proceedings of the Twenty-
Eighth Annual SAS Users Group International Conference, Cary,
NC: SAS Institute, Inc.

ACKNOWLEDGMENTS
Thanks to all the great public health professionals at the Office on
Smoking and Health, Center for Chronic Disease.

TRADEMARK CITATION
SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Mark Tabladillo
 Email: marktab@marktab.com
 Web: http://www.marktab.com/

